The distribution of dissolved aluminum in Atlantic salmon (Salmo salar) rivers of Atlantic Canada and its potential effect on aquatic populations

Ian F. Dennis and Thomas A. Clair

Abstract: Studies from the 1980s concluded that aluminum (Al) was not a significant contributor to Atlantic salmon (Salmo salar) toxicity in Nova Scotia, located on Canada’s Atlantic coast, because of the presence of dissolved organic matter that rendered ionic Al (Ali) biologically inaccessible. Since this earlier work, new interpretations of Ali effects, as well as improved techniques for its measurement, have been developed. However, no new data interpretation has been done to see if the conclusions reached in earlier work for Atlantic Canada were still valid. We sampled 97 salmon rivers from the provinces of New Brunswick (NB), Nova Scotia (NS), and the island of Newfoundland (NF) to determine total and Ali concentrations to see if results exceeded newer toxicity standards established by the European Inland Fisheries Advisory Commission. We found that southwestern NS, the region with the greatest loss of salmon populations, has seven rivers where autumn Ali values exceed values identified as toxic to aquatic life. A further three rivers exceed guidelines in NF. Our work shows that the sources of toxicity for salmon and other aquatic species in acidified environments are more complex than previously thought.

Résumé: Des études réalisées dans les années 1980 concluaient que l’aluminium (Al) ne participait de manière significative à la toxicité pour le saumon atlantique (Salmo salar) en Nouvelle-Écosse, sur la côte atlantique du Canada, en raison de la présence de matière organique dissoute rendant l’aluminium ionique (Ali) non bioaccessible. Depuis, de nouvelles interprétations des effets de l’Al, ainsi que des techniques améliorées pour mesurer ce paramètre ont été établies. Aucune nouvelle interprétation des données n’a toutefois été réalisée dans le but de vérifier la validité pour le Canada atlantique des conclusions des travaux antérieurs. Nous avons échantillonné 97 rivières à saumons dans les provinces du Nouveau-Brunswick (NB) et de la Nouvelle-Écosse (NÉ) et dans l’île de Terre-Neuve (TE) afin de déterminer les concentrations d’Al total et d’Ali pour vérifier si les résultats dépassaient les seuils de toxicité plus récents établis par la Commission européenne consultative pour la pêche dans les eaux intérieures. Nous avons ainsi découvert que le sud-ouest de la NÉ, la région présentant les plus fortes pertes de populations de saumons, compte sept rivières dans lesquelles les valeurs automnales d’Ali dépassent les seuils de toxicité pour la vie aquatique. Trois rivières à TN dépassent également ces seuils. Nos travaux démontrent que les sources de toxicité pour le saumon et d’autres espèces aquatiques dans les milieux acidifiés sont plus complexes que ce que les interprétations antérieures suggéraient.

Introduction

Atlantic salmon (Salmo salar) populations in Nova Scotia (NS), Canada, have been seriously affected by acid precipitation (Watt 1987; Clair et al. 2004). Over 30 rivers in that province have populations that have either been eradicated or seriously depleted over the last 40 years because of increased habitat acidification. Another potential cause of salmon popu...
charged fish gill epithelium, causing irritation that results in excessive mucous production, which then clogs gill membranes. The excess mucous can eventually lead to severe respiratory reduction in the fish (Rosseland and Staurnes 1994; Sparling and Lowe 1996; Klöppel et al. 1997).

The role of Al, on the health of salmon and other biota in the acidified fresh waters of the east coast region of Canada (referred to as Atlantic Canada) was not as clear compared with other places such as Norway, because of the presence of high levels of organic carbon (OC) in many of its surface waters. Clair et al. (2007) showed that because of flat topography and the relative impermeability of subsurface geology, large portions of Atlantic Canada contain wetlands generating OC that can complex metals, including Al in natural waters.

OC in fresh waters contains negatively charged carboxylic acid functional groups, which complex metals, including Al, depending in large part on ambient pH. At pH values < 5.5, these sites provide binding opportunities for metal ions (Tipping et al. 1991), thus removing metallic ions from solution into an inert, organically bound complex, making them unavailable for interaction with biota, especially the gills of fish. Because Al ionic state and toxicity also vary depending on ambient pH (Baker and Schofield 1982; Driscoll et al. 2001; Howells et al. 1990), assigning total Al concentration levels to indicate potential harm to aquatic life cannot be done without taking both pH and OC complexation into account.

Assessing the chemical impact and interactions of organic matter in fresh waters is difficult, as OC is operationally defined. In waters containing high levels of suspended matter, samples are prefiltered with a 0.45 µm glass fiber filter before analysis, and the resulting sample is defined as dissolved organic carbon (DOC). OC from unfiltered samples is defined as total organic carbon (TOC). The waters we sampled were all from undisturbed watersheds with little suspended matter (Clair et al. 2007), and no filtering was done on them before OC analysis. Extensive laboratory comparisons in this region have shown that the difference between DOC and TOC in waters draining non-agricultural waters is usually <5%, so filtering is not routinely done for natural samples. OC in this study is therefore defined as TOC.

Based on an extensive review of existing toxicological and geochemical literature, the European Inland Fisheries Advisory Commission (EIFAC) recommended that for protection of aquatic life, Al should not exceed 15 µg·L⁻¹ at pH levels between 5.0 and 6.0 (Howells et al. 1990). In this pH range, the predominating Al forms were Al(OH)₃⁺, Al(OH)₂⁺, or various other positively charged configurations that were shown to be most irritating to gill epithelia and thus could cause harmful effects. They also show that a number of other aquatic species groups such as macroinvertebrates are affected at these levels. Baker and Schofield (1982) also identified the pH range of 5.2 to 5.4 as leading to the greatest Al toxicity effects in fish.

Al has also been shown to cause deleterious effects at pH values below 5.0 when it is in the Al³⁺ form, but to a lesser extent than between pH 5 and 5.4 (Howells et al. 1990). Howells et al. (1990) therefore recommended that 30 µg·L⁻¹ be used as a harmful Al criterion in waters with pH < 5.0. The Al toxic effect is generally reduced with increasing pH and is thought to be negligible above pH 6, partly because its solubility is reduced at that acidity level.

In the 1980s a few studies assessed the importance of TOC and pH in determining the potential toxicity of Al in the rivers of Atlantic Canada. However, these were done prior to improvements in speciation and assessment approaches. In particular, Lacroix and Townsend (1987) and Peterson et al. (1989) used an Al₃⁺ value of 50 µg·L⁻¹ as a critical value where toxic effects would be significant, a value later found to be higher than the EIFAC guideline (Howells et al. 1990).

Earlier analytical approaches for estimating Al₃⁺ concentrations, as opposed total Al (Al₃⁺), were also not always successful because of complications caused by complexation with OC. With the advent in the mid to late 1990s of newer, simpler, and field-oriented processing methods, it has become easier to extract and stabilize total and complexed forms of Al in situ, which allows more flexibility in handling samples between field collection and laboratory analysis. With this improved capability, the sampling and analyzing of a large number of samples collected over a wide region has now become much easier, allowing this study to be done.

As no assessment of potential effects of Al₃⁺ had been done in Atlantic Canada since the 1980s, and as newer analytical techniques were now available for determining the ionic composition of Al, we thought it useful to reassess its potential contribution to the demise of Atlantic salmon populations as well as its potential effects on aquatic communities in the region. We therefore measured concentrations of total (Al₃⁺) and Al complexed on organic matter (Al₃⁻), and then by difference, estimated Al in 97 rivers in Atlantic Canada that had or were known to have had Atlantic salmon populations. Though Al toxicity effects are most severe in the springtime, we sampled the rivers during the autumn base flow period to try to better identify the geological regions most susceptible to producing dissolved Al₃⁻.

Our main goal was therefore to produce an overview of Al₃⁻ concentrations in rivers of Atlantic Canada that were known to have had Atlantic salmon populations in the past. We used the survey information to identify where potentially ecologically important Al₃⁻ concentrations could be found. We then developed statistical regressions using Al₃⁻, pH, and TOC, as well as other parameters to predict Al₃⁻ concentrations in the region’s other fresh waters to produce a tool useful for aquatic ecologists to assess its potential toxicological importance. We also tested for the null hypothesis that complexation of Al by TOC is widespread in Atlantic Canadian fresh waters and that concentrations of Al considered deleterious to fish using the EIFAC standard will not be found in the Atlantic salmon streams that we sampled, because of the high ambient TOC concentrations.

Materials and methods

Study area

Atlantic Canada is located at the extreme northeastern portion of North America (Fig. 1). The region contains a wide variety of geological terranes, as well as a wide range of soil types, ranging from thin podsol to well-developed agricultural soils. Over 100 rivers located in the provinces of New Brunswick (NB), Nova Scotia (NS), and the island of Newfoundland (NF, part of the Province of Newfoundland and Labrador) have been identified as having or had Atlantic salmon historically (Watt 1987).
In the fall of 2006, we sampled 97 of these rivers that were undisturbed by industrial or urban development. All of the catchments sampled were forested, though some had small-scale forestry activities. There were occasional small villages or farms in some of the catchments, but as far as could be determined, none had activities that could cause siltation or other major disturbances to the studied river. All were sampled at locations free of estuarine effects.

Forty-two of the rivers were located in NS, most of which were located in catchments overlain by thin, glaciated soils and located over poorly acid-buffering slates and granites, though a number of sites in the northern part of the province were located over sandstone formations and had deeper, better acid-buffered soils (Keppie 2000; Shilts 1981). Twenty-three sites were located in NB, in a region mostly underlain by siliceous sandstones (Fyffe and Richard 2007), while the remaining 32 rivers were located in NF, in catchments underlain mainly by siliceous sedimentary bedrock or granites (Williams and Hayes 2004). Major ion water chemistry was reflective of the soil and bedrock types. Acidity ranged widely in these rivers, with pH values from 8.2 in some NF and NB rivers to 4.5 at some sites in southwest NS, which receive relative high acid deposition levels from the eastern USA and central Canada (Table 1; Clair et al. 2007).

Clair et al. (2011) have shown that though sulphur deposition from acid rain has decreased by approximately 50% in the last 30 years, there has been no concurrent improvement in lake acidity or acid neutralization capacity over that period in NS and NF, unlike anywhere else in North America and Europe where water chemistry is widely improving (Skjelkvåle et al. 2005; Garmo et al. 2011). This lack of improvement is due to the depletion of base cations from the shallow, podsolic soils found in much of these provinces and is also the potential cause of further stress to biological populations as dissolved calcium has been reduced (Jeziorski et al. 2008). The lack of base cations in soils therefore requires their substitution by H$^+$ and ionic forms of Al to maintain electroneutrality, causing low pH and higher Al$_i$ concentrations (Driscoll 1985). Water chemistry is further complicated in NS and parts of NF by a preponderance of rivers with high levels of dissolved organic matter, which is generated by decaying plant organic matter in wet soils, especially wetlands, that is transported to lakes and rivers (Clair et al. 2007). This material is negatively charged and has the ability...
Field sampling and laboratory analyses

At each site, a water sample was collected for major ion analysis, and three unfiltered 500 mL water samples were collected for total metal analysis. Processing and analysis of Al samples was based on the work of Tangen et al. (2002). Three 250 mL samples were drawn directly from the stream or river into a cartridge containing 500 mg of a preconditioned benzene sulfphonic acid bound to a silica base cation exchange resin. The cartridges were pre rinsed with 28 mL of 0.4 mol·L⁻¹ NH₄⁰ acetate buffer at pH 5, followed by 28 mL of river sample water. Thirty millilitres of the sample were then passed through the column and the eluate collected. At each site we therefore had (i) three unfiltered samples for Al\(_i\), (ii) three samples where Al\(_i\) had been removed by the exchange resins, so that what remained in the eluate was Al\(_o\), and (iii) one sample for pH, conductivity, TOC, and major ion analysis. All aluminum values reported are averages of the replicates.

Al\(_i\) was not measured directly, but estimated as the difference between Al\(_i\) and Al\(_o\) (i.e., Al\(_i\) = Al\(_i\) – Al\(_o\)). In the presence of suspended or colloidal Al in the water sample, this method could inadvertently cause an overestimation of Al\(_i\), as the Al in suspended matter, which would be bound and thus biologically inert, could get trapped by the exchange resins. This issue probably caused complications in data interpretation, which we discuss below.

Both the ion-exchanged and unprocessed water samples were stored in cool conditions until delivered to Environment Canada’s Atlantic Laboratory for Environmental Testing in Moncton, NB, a laboratory certified through the Canadian Association for Laboratory Accreditation. The metal samples were acidified to pH < 2 using concentrated HNO₃. Total Al was analyzed in both the ion exchanged (Al\(_o\)) and unfiltered Al (Al\(_i\)) sample using inductively coupled plasma mass spectrometry (ICP-MS).

All major ion and organic carbon samples were analyzed according to Atlantic Laboratory for Environmental Testing standard protocols. pH was measured potentiometrically, Cl⁻ and NO₃⁻ were done by ion chromatography, while Ca²⁺, Mg²⁺, K⁺, and Na⁺ were done by inductively coupled plasma emission spectrometry. Gran acid neutralization capacity (ANC\(_i\)) was estimated from the measured titration curve and reported as µequiv·L⁻¹ of HCO₃⁻. Calculated ANC (ANC\(_o\)) was estimated by subtracting the sum of base cations (in equivalent units) from the sum of acid anions. TOC was measured using a high temperature combustion method.

Results and discussion

Regional geochemistry

Results revealed distinctive geographical patterns in the distribution of Al\(_i\) and Al\(_o\) (Fig. 1). Al\(_i\) ranged widely, from a low of 12.5 µg·L⁻¹ in northern NB’s Charlo River to 464 µg·L⁻¹ in the Red Harbour River of NF (Table 1). The highest Al\(_i\) values, which exceeded 300 µg·L⁻¹, were mostly located in catchments underlain by granitic and slate bedrock in southwest NS and over siliceous sandstones in eastern NB and northern NS (Fig. 1). Soils were very different between these two regions, with southwest NS soils being very thin (~0.5 m), poorly drained, and podzolic (Keys 2007), while eastern NB’s were mostly composed of deeper, well-drained sandy-loam tills (Colpitts et al. 1995). One high Al\(_i\) value (464 µg·L⁻¹) from Red Harbour in NF did not fit into this regional pattern. That catchment had very shallow soils overlaying volcanic bedrock, but received relatively low acid deposition because of its location far from long range emission sources in central Canada and the eastern USA. Though the catchment is located approximately 100 km southwest of the Come By Chance oil refinery, none of the other chemical variables (SO₄²⁻ or other metals) suggested that refinery emissions might be the cause of the high value. A closer look at the local geology may provide answers to this dilemma.

We expected that Al\(_i\) values would be greater at lower pH because of enhanced ion exchange in soils and weathering of bedrock. The relationship between Al\(_i\) and pH did show a lower limit in the pH–Al\(_i\) interaction and that higher Al\(_i\) val-

Table 1. Range of values for key parameters in this study for each region studied.

<table>
<thead>
<tr>
<th>Region</th>
<th>TOC (mg·L⁻¹)</th>
<th>pH</th>
<th>ANC(_G) (mg·L⁻¹)</th>
<th>Al(_i) (µg·L⁻¹)</th>
<th>Al(_o) (µg·L⁻¹)</th>
<th>Al(_o) (µg·L⁻¹)</th>
<th>%AL(_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Brunswick, 22 rivers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>28.3</td>
<td>8.2</td>
<td>77.7</td>
<td>415.7</td>
<td>364.4</td>
<td>199.8</td>
<td>75.1</td>
</tr>
<tr>
<td>Min.</td>
<td>2.4</td>
<td>6.5</td>
<td>5.8</td>
<td>12.5</td>
<td>5.5</td>
<td>5.5</td>
<td>2.4</td>
</tr>
<tr>
<td>Med.</td>
<td>6.9</td>
<td>7.6</td>
<td>18.1</td>
<td>106.7</td>
<td>79.5</td>
<td>31.0</td>
<td>33.4</td>
</tr>
<tr>
<td>Newfoundland, 32 rivers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>14.5</td>
<td>8.3</td>
<td>82.2</td>
<td>464.0</td>
<td>352.4</td>
<td>126.1</td>
<td>75.9</td>
</tr>
<tr>
<td>Min.</td>
<td>4.6</td>
<td>5.3</td>
<td>0.5</td>
<td>21.0</td>
<td>6.1</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Med.</td>
<td>8.2</td>
<td>7.0</td>
<td>7.0</td>
<td>110.3</td>
<td>97.6</td>
<td>10.8</td>
<td>11.0</td>
</tr>
<tr>
<td>Nova Scotia, 43 rivers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>29.1</td>
<td>7.6</td>
<td>21.8</td>
<td>394.6</td>
<td>364.7</td>
<td>230.0</td>
<td>70.1</td>
</tr>
<tr>
<td>Min.</td>
<td>4.8</td>
<td>4.1</td>
<td>0.0</td>
<td>73.1</td>
<td>60.0</td>
<td>6.9</td>
<td>4.0</td>
</tr>
<tr>
<td>Med.</td>
<td>9.8</td>
<td>6.4</td>
<td>3.1</td>
<td>206.0</td>
<td>173.7</td>
<td>25.3</td>
<td>12.4</td>
</tr>
</tbody>
</table>

Note: TOC, total organic carbon; ANC\(_G\), Gran acid neutralization capacity; Al\(_o\), total aluminum; Al\(_i\), Al complexed on organic matter; Al\(_o\), ionic aluminum.
ues roughly correlated with lower pH (Fig. 2). However, a cluster of high Al\textsubscript{t} values originating in samples from eastern NB and northern NS was located in the pH range 6.8 – 8.0, which did not allow a reasonable regression to be calculated. This phenomenon of high Al\textsubscript{t} must be due to the influence of the sandstone geological bedrock that underlies most of eastern NB and southeast NS, though this type of relationship also has not been reported elsewhere, as the usual accepted relationship follows the low pH – high Al\textsubscript{t} pattern (e.g., Driscoll 1985).

The correlation between Al\textsubscript{i} and TOC showed an increasing linear relationship until TOC values reached \textasciitilde15 mg·L-1, whence Al\textsubscript{i} values leveled off at roughly 450 µg·L-1 (Fig. 3), a value \textasciitilde150 µg·L-1 lower than the maximum value reported from the Adirondack Mountains of New York State (cited by Howells et al. 1990). These data suggest that there seems to be a limit to how much Al can be weathered from soil solution or bedrock in the geological–soil conditions existing in Atlantic Canada. It was expected that Al\textsubscript{i} values would be greater at low TOC values than at higher ones, which was generally the case (Fig. 4). However, the best statistical relationship we could develop (exponentially decreasing equation between TOC and %Al\textsubscript{i}) could only explain 20% of the variability in the data.

Al\textsubscript{i} values were consistently lower than Al\textsubscript{o} (with two exceptions in high pH waters) (Fig. 1) and ranged from a low of 0.06 µg·L-1 in Northwest Brook (NF) to a high of 230 µg·L-1 in the West River, Antigonish, NS. Based on the work of Driscoll (1985) and Henriksen et al. (1988), we expected that higher Al\textsubscript{i} concentrations would be found at lower pH values. This was not always the case in our data, as 8 of the 97 Al\textsubscript{i} values were at pH levels > 6.5 (Fig. 5).

We suspected that these high pH, high Al\textsubscript{i} values might be an artifact of the ion exchange method used. Teien et al. (2007) showed that in high TOC waters collected during high river flows in Norway, organic colloids could form, which then precipitated onto the ion exchange column, thus giving the false impression of higher Al\textsubscript{i} concentrations. Our sampling, quality control, and laboratory assessments, however, did not suggest any problems of this nature, though all of these high pH and “Al\textsubscript{i}” samples also had high TOC levels. Nevertheless, as not all high TOC, high pH samples showed high Al\textsubscript{i} concentrations, we therefore decided that selectively removing data from the analysis without an objective method of identifying obviously incorrect data was not acceptable, so that we kept all the data in our statistical analysis. It is important to note that even if these high Al\textsubscript{i} values
are incorrect, that at the measured pH values, the concentrations reported would have no effect on aquatic toxicity (see below).

As we were able to directly measure the complexed portion of Al (A_{lo}), we developed an equation to predict A_{lo} concentration with what we assumed to be its major chemistry controls. A multilinear relationship predicting A_{lo} from A_l and TOC was calculated that accounted for 90% of the variability (eq. 1):

$$A_{lo} = -16.4 + 0.57 \cdot A_l \, (\mu g \cdot L^{-1})$$
$$+ 6.15 \cdot \text{TOC} \, (mg \cdot L^{-1}), \ r^2 = 0.90$$

The addition of pH to the regression only improved its predictability by another 3%:

$$A_{lo} = 166.4 + 0.50 \cdot A_l + 5.06 \cdot \text{TOC}$$
$$- 23.5 \cdot \text{pH}, \ r^2 = 0.93$$

Converting pH to H^+ activity or adding other cations or anions did not significantly improve the regression, so that most of the A_{lo} variation in our survey could be accounted for by A_l, TOC, and pH.

The correlation equation predicting A_l concentration from A_l and TOC (eq. 3) was similar to eq. 1, except for sign changes, but only explained 52% of the variability:

$$A_l = 16.4 + 0.43 \cdot A_l \, (\mu g \cdot L^{-1})$$
$$- 6.16 \cdot \text{TOC} \, (mg \cdot L^{-1}), \ r^2 = 0.52$$

The addition of pH in the regression equation improved the predictive power for A_l, even though the equation was also similar to that for A_{lo}, except for the signs on the pH and TOC coefficients.

$$A_l = -166.5 + 0.5 \cdot A_l - 5.06 \cdot \text{TOC}$$
$$+ 23.5 \cdot \text{pH}, \ r^2 = 0.68$$

The use of these equations can then allow ecologists and water quality specialists to predict biologically reactive A_i concentrations in Atlantic Canada waters where specialized measurements using ion exchange approaches have not been made.

Other relatively recent studies analyzed fresh waters in other parts of the world, with which we compared our data. Warby et al. (2008) sampled 113 lakes in the northeastern USA in the summer of 2001 and estimated a median A_l value of 39 µg·L⁻¹ for a region stretching from Maine to Pennsylvania, compared with our median value of 147.9 µg·L⁻¹. Their median A_l value was 12.5 µg·L⁻¹, while ours was slightly higher at 18.6 µg·L⁻¹. The USA data shows regionally lower A_l than ours, even though our study region is further away from anthropogenic acidification sources, a difference we can only ascribe to the influence of geological substrates. Titration of soils and exposed bedrock by acid deposition can be an important contributor to the dissolution of Al in waters (Cronan and Schofield 1990). However, considering that northeastern USA receives two to three times more acid deposition than our study area (Vet et al. 2005), we can see that geology and soil composition also have an important role to play, along with acid deposition in determining A_l levels.

Table 2. Rivers where A_l exceeds EIFAC criterion of 15 µg·L⁻¹ (5 > pH > 6) or are near 30 µg·L⁻¹ at pH < 5.

<table>
<thead>
<tr>
<th>Map No.</th>
<th>Site</th>
<th>TOC (mg·L⁻¹)</th>
<th>pH</th>
<th>A_l (µg·L⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 > pH > 6</td>
<td>< 30 µg·L⁻¹</td>
</tr>
<tr>
<td>82</td>
<td>W Sheet Harbor</td>
<td>14.40</td>
<td>5.0</td>
<td>27.50</td>
</tr>
<tr>
<td>97</td>
<td>Tusket</td>
<td>12.50</td>
<td>5.1</td>
<td>55.10</td>
</tr>
<tr>
<td>94</td>
<td>Mersey</td>
<td>7.60</td>
<td>5.1</td>
<td>39.03</td>
</tr>
<tr>
<td>99</td>
<td>Sissiboo</td>
<td>11.50</td>
<td>5.2</td>
<td>36.83</td>
</tr>
<tr>
<td>45</td>
<td>Red Harbour</td>
<td>14.50</td>
<td>5.3</td>
<td>126.06</td>
</tr>
<tr>
<td>49</td>
<td>Salmon River 2</td>
<td>14.40</td>
<td>5.3</td>
<td>18.80</td>
</tr>
<tr>
<td>33</td>
<td>Cat Arm</td>
<td>7.40</td>
<td>5.4</td>
<td>17.67</td>
</tr>
<tr>
<td>93</td>
<td>Medway</td>
<td>9.20</td>
<td>5.5</td>
<td>19.44</td>
</tr>
<tr>
<td>92</td>
<td>La Have</td>
<td>11.10</td>
<td>5.9</td>
<td>25.30</td>
</tr>
<tr>
<td>98</td>
<td>Meteghan</td>
<td>13.10</td>
<td>6.1</td>
<td>23.00</td>
</tr>
</tbody>
</table>

Other studies in Europe have also measured A_l in lakes and have produced data with which we can compare ours. Rask et al. (1995) sampled water chemistry and fish populations from 80 lakes in Finland to develop a model that could predict fish population tolerances to pH and A_l. Their A_l values were relatively similar to those we found in our study and ranged from very low to approximately 150 µg·L⁻¹, with one outlying value near 230 µg·L⁻¹. Hesthagen et al. (2008) compared water chemistry with brown trout (Salmo trutta) population health in 790 lakes in Norway. Their A_l values ranged from very low to approximately 300 µg·L⁻¹, though there was a large group of sites with values near 0 µg·L⁻¹ and another large grouping in the range 20–100 µg·L⁻¹, again similar to the range of values we measured. The data from other regions therefore shows that our A_l values are typical for cool, temperate ecosystems underlain by a range of geological types.

Much of the earlier freshwater Al literature (e.g., Driscoll 1985; Campbell et al. 1992) was developed from samples collected in regions with relatively homogeneous soil and geological and acid deposition conditions. This has allowed an understanding of dissolved Al geochemistry within specific soil and geological types, but has not provided information applicable to regions with wide ranges of characteristics. Our results are therefore less informative concerning geochemical processing, but are more useful in terms of providing an idea of the variability of Al in fresh waters of a glaciated region with a wide range of geological substrates.

One of the limits of this study is that sampling and isolation of A_l were done in the fall during base flow period, as opposed to the spring when TOC concentrations and Al complexation is at its annual minimum and pH is lowest because of the dilution effects of snowmelt. Campbell et al. (1992) developed a linear–logarithmic equation similar to ours that described the relationship between A_l, with A_{lo}, H^+ activity, and DOC in rivers from the north shore of the St. Lawrence River in eastern Canada. They found that their statistical relationship broke down during snowmelt periods when they sus-
expected that a reduction in the metal complexation capacity of DOC due to its dilution in spring runoff increased relative Al\textsubscript{i} activity. In our case, we expect that TOC–Al complexation would be at its maximum during autumn when we sampled and that Al\textsubscript{i} might be found at a higher concentration in the spring when pH is lowest and TOC is more dilute and has less complexation capacity.

Ecosystem implications

When we apply the EIFAC effects criterion of 15 µg·L-1 Al\textsubscript{i} for waters of pH between 5.0 and 6.0 (Howells et al. 1990), 10 of our rivers (7 in NS, 3 in NF) had values that were in exceedance (Table 2; Fig. 6). Further, four other rivers with pH < 5.0 had Al\textsubscript{i} values near or greater than 30 µg·L-1, which also exceed or are close to the criterion for that pH category. The conclusion that 14 rivers in Atlantic Canada had Al\textsubscript{i} values that exceeded the EIFAC criterion during autumn was somewhat unexpected, as we initially hypothesized that because of generally high TOC concentrations in our study rivers, all Al was complexed and thus not a factor in reducing the ability of aquatic ecosystems to survive or thrive.

There is some subjectivity in assigning Al\textsubscript{i} concentrations to lethal and sublethal effects on biota, as other criteria have been used elsewhere. Baker and Schofield (1982) studied a number of fish species from the Adirondack region of New York State and showed differential effects of Al\textsubscript{i}, which varied between species and pH levels, concluding that Al\textsubscript{i} concentrations >100 µg·L-1 were important in causing harm to fish. Similarly to Howells et al. (1990), they also showed that Al effects were most important in the pH range of 5.2–5.4, emphasizing the interplay between Al speciation and pH in determining fish survival. The work from the Adirondacks was recently updated by Baldigo et al. (2007), who used 50 and 100 µg·L-1 as levels where "low" and "high" mortality effects on caged brook trout (*Salvelinus fontinalis*) could be assigned. Should we use the USA criteria with our data, then Al\textsubscript{i} concentrations found in our region would not be considered toxic or harmful to aquatic life.

To complicate matters further, Kroglund et al. (2008) suggest that spring freshwater Al\textsubscript{i} levels as low as 5–10 µg·L-1 may cause a 25%–50% reduction in salmon smolt survival during migration into the open ocean. Monette et al. (2008)
and McCormick et al. (2009) also confirm the reduced smolt survival rates under low pH, high Al, conditions based on controlled studies, though their work used higher Al values than the Kroglund et al. evaluation. The effect levels shown by these two studies cannot be used to assess our data because we have no spring Al values, but provide an indication that dissolved Al effects may be more severe and extend to more Atlantic Canadian rivers than shown in this study. Further sampling in the spring is clearly warranted in NS and some NF rivers when this is taken into account.

Another potential wrinkle in assessing Al effects is that fluoride (F⁻) in water has been shown to have an attenuation effect on toxicity as it outcompetes Al for binding sites on fish gills (Wilkinson et al. 1990). It is difficult to assess the importance of this reaction in our study, as F⁻ was not analyzed because it has rarely been found at analytical detection levels in the region and thus is no longer analyzed in Environment Canada programs. As a first approximation, we will assume, as in USA, Norwegian, and Finish studies, that its effect is negligible.

Regardless of which criteria are used to assess the toxicity of Al, it is clear that even at low concentrations, especially in the pH range of 5.0 to 5.6, it will cause an irritation to salmon and other aquatic biota, which, if not necessarily lethal, will cause further degradation in fitness and the ability to adequately deal with other stresses, such as stream acid pulses, moltification, and migration to the ocean. As our study results are also based on autumn data when Al–TOC complexation capacity is at its maximum, we can most likely assume that springtime Al conditions will be more deleterious to regional fish survival than in the autumn and therefore need to be further studied.

Because of the landscape, geology, and acid deposition conditions in Atlantic Canada, the regression equations we develop with our data are specific to a geographical area, though the approach we take can be used in other regions, as the types of interactions between the main chemical parameters in our work follow patterns shown elsewhere. The main region that our study identifies as having autumn Al values that are high enough to cause mortality or stress to aquatic life is southwestern NS. Our chemistry data correlate almost precisely with the data produced by Watt (1987), who showed that salmon populations in this region’s rivers were either extinct or severely depleted. Though it is difficult to separate the exact contribution of Al versus pH, it is clear that aluminum is at levels high enough to cause harm to salmon and most likely other fish species.

In this study, we have identified the rivers where Al has the potential for causing the most harm for aquatic species in Atlantic Canada. Our data show that predicting ambient Al concentrations and their ecological effects is not straightforward. In Atlantic Canadian streams, many of the highest Al values were found in high pH (>6.5) waters where Al will be in highly hydroxylated form and thus toxicologically unimportant (Howells et al. 1990). Moreover, in the presence of high TOC concentrations such as are found in the region, a major portion of Al will be complexed and biologically inert. Nevertheless, in a number of the study area’s highly acidic waters containing high TOC concentrations, Al can still be measured at levels known to cause harm to aquatic fauna. The need is now to apply this information in more specific ways and on a seasonal cycle to better quantify the extent of the problem to key indicator aquatic species and ecosystems. Atlantic salmon, as well as many other aquatic biota, are most active and vulnerable to aluminum toxicity in the spring during migration and reproduction when water flows are high and pH is low. Water sampling and Al specification therefore needs to be done in the spring, especially in southwestern and eastern NS, to get an accurate assessment of the potential biological effects of Al in these highly sensitive waters.

Acknowledgements

The authors thank Fernand Hebert and Martin Leger of Environment Canada’s Atlantic Laboratory for Environmental Testing for their assistance in developing the ion exchange method and for the analytical support. We also thank Jason Robinson for his assistance in the field. Bill Ernst of Environment Canada provided useful comments to help improve the manuscript. The manuscript was further improved by input from Frode Kroglund of Norway and from an anonymous reviewer. This work was done with funding provided by Environment Canada’s Clean Air Regulatory Agenda.

References

Published by NRC Research Press

